Direct Numerical Simulations of Three-Dimensional Cavity Flows
نویسندگان
چکیده
Three-dimensional direct numerical simulations of the full compressible Navier–Stokes equations are performed for cavities that are homogeneous in the spanwise direction. The formation of oscillating spanwise structures is observed inside the cavity. We show that this 3D instability arises from a generic centrifugal instability mechanism associated with the mean recirculating vortical flow in the downstream part of the cavity. In general, the threedimensional mode has a spanwise wavelength of approximately 1 cavity depth and oscillates with a frequency about an order-of-magnitude lower than 2D Rossiter (flow/acoustics) instabilities. The 3D mode properties are in excellent agreement with predictions from our previous linear stability analysis. When present, the shear-layer (Rossiter) oscillations experience a low-frequency modulation that arises from nonlinear interactions with the three-dimensional mode. We connect these results with the observation of low-frequency modulations and spanwise structures in previous experimental and numerical studies on open cavity flows. Preliminary results on the connections between the 3D centrifugal instabilities and the presence/suppression of the wake mode are also presented.
منابع مشابه
Three-dimensional instabilities in compressible flow over open cavities
Direct numerical simulations are performed to investigate the three-dimensional stability of compressible flow over open cavities. A linear stability analysis is conducted to search for three-dimensional global instabilities of the two-dimensional mean flow for cavities that are homogeneous in the spanwise direction. The presence of such instabilities is reported for a range of flow conditions ...
متن کاملThree-dimensional characteristic approach for incompressible thermo-flows and influence of artificial compressibility parameter
In this paper the characteristics of unsteady three-dimensional incompressible flows with heat transfer are obtained along with artificial compressibility of Chorin. At first, compatibility equations and pseudo characteristics for three-dimensional flows are derived from five governing equations (continuity equation, Momentum equations in three directions, and energy equation) and then results ...
متن کاملExperimental Study and Three-Dimensional Numerical Flow Simulation in a Centrifugal Pump when Handling Viscous Fluids
In this paper the centrifugal pump performances are tested when handling water and viscous oils as Newtonian fluids. Also, this paper shows a numerical simulation of the three-dimensional fluid flow inside a centrifugal pump. For these numerical simulations the SIMPLEC algorithm is used for solving governing equations of incompressible viscous/turbulent flows through the pump. The k-ε turbulenc...
متن کاملNumerical Simulation of Mixed Convection Flows in a Square Double Lid-Driven Cavity Partially Heated Using Nanofluid
A numerical study has been done through an Al2O3–water in a double lid-driven square cavity with various inclination angles and discrete heat sources. The top and right moving walls are at low temperature. Half of the left and bottom walls are insulated and the temperatures of the other half are kept at high. A large number of simulations for a wide range of Richardson number ...
متن کاملThree-dimensional linear stability analysis of cavity flows
Numerical Simulations of the twoand three-dimensional linearized Navier–Stokes equations are performed to investigate instabilities of open cavity flows that are homogeneous in the spanwise direction. First, the onset of two-dimensional cavity instability is characterized over a range of Mach numbers, Reynolds numbers and cavity aspect ratios. The resulting oscillations are consistent with the ...
متن کامل